摘要:
为了实现无损检测稻谷储藏中的霉变,该研究以引起稻谷霉变的5种常见真菌(米曲霉、黑曲霉、构巢曲霉、桔青霉和杂色曲霉)为对象,首先进行真菌培养,制成悬浮液,然后将悬浮液接种到稻谷样品中,对稻谷样品模拟储藏,确定不同霉变程度的稻谷类型,划分为对照组(无霉变)、轻微霉变组和严重霉变组.利用计算机视觉系统对三组稻谷样品进行图像采集和图像处理,提取灰度、颜色和纹理特征,共获取68个图像特征.采用支持向量机(support vector machines,SVM)和偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)构建模型,分别用于无霉变稻谷与霉变稻谷的区分和稻谷霉变类型区分.为了降低模型复杂度和数据冗余,利用连续投影算法(successive projections algorithm,SPA)来消除原始数据变量间的共线性,优选特征值.结果表明:利用所有参数构建的SVM模型能够很好的区分对照组与霉变组,其中建模集和验证集总体区分准确率分别为99.7%和98.4%;SVM模型对于稻谷严重霉变类型的区分效果要优于轻微霉变稻谷,其中对稻谷轻微霉变类型建模集和验证集总体区分的准确率分别为99.3%和92.0%,对稻谷严重霉变类型区分的总体准确率分别为100%和94%,且整体上SVM模型的效果要优于PLS-DA模型.而基于SPA优选特征构建的模型区分结果表明,SVM模型区分效果优于PLS-DA模型,其中,在建模集和验证集中,对无霉变和霉变稻谷总体区分准确率分别为99.8%和99.5%,对稻谷轻微霉变种类区分总体准确率分别为99.8%和90.5%,对稻谷严重霉变种类区分总体准确率分别为100%和95.0%.因此,基于计算机视觉对稻谷霉变检测是可行的,而且SPA优选特征能够较好反映稻谷霉变特征,基于优选特征和SVM模型能够较好地稻谷霉变进行识别和区分,结果较好,可以为实际应用提供技术支持和参考.