基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主成分分析法(PCA)作为一种常用的降维算法,被广泛的应用到如高光谱图像处理等需要进行大量数据处理的应用中.PCA的主要目的是利用正交变换,将具有相关性的高维数据的分量转换为线性不相关的新的成分变量,但当矩阵维数超过百万时候会造成严重的计算困难问题.本文针对PCA运算中协方差矩阵计算过程中内存调度的问题,提出了一种基于像素结构的改进的协方差矩阵计算方法,可以在确保与常规PCA具有相同性能的同时有效地降低计算所需的存储器规模.实验中分别采用传统PCA算法和改进算法对高光谱图像数据进行特征提取后利用支持向量机(SVM)进行分类,对比结果验证了改进算法的有效性和可靠性.
推荐文章
空谱超像素核极限学习机的高光谱分类算法
空间结构信息
超像素
同谱异类
极限学习机
基于ANN端元估计的高光谱图像解混算法
高光谱图像解混
人工神经网络
端元估计
差分搜索算法
改进协同表示的高光谱图像异常检测算法
高光谱图像
异常检测
异常像元
协同表示
双窗口
基于差分搜索的高光谱图像解混算法
高光谱图像解混
差分搜索算法
盲源分离
丰度非负约束
丰度和为一约束
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高光谱图像基于像素结构的改进PCA算法
来源期刊 信息通信 学科 工学
关键词 结构主成分分析 高光谱图像 特征提取 数据降维
年,卷(期) 2017,(8) 所属期刊栏目 专业论坛
研究方向 页码范围 273-276
页数 4页 分类号 TP391
字数 3303字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 焦亚萌 西安工程大学电子信息学院 9 9 2.0 2.0
2 任劼 西安工程大学电子信息学院 8 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (46)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
结构主成分分析
高光谱图像
特征提取
数据降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
总被引数(次)
34323
论文1v1指导