作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
可解释推荐成为近年来推荐系统领域的一个热点研究话题。然而,现有的可解释推荐方法并不能定量地为推荐结果做出解释。为了解决这个问题,提出一种基于主题的矩阵分解模型。模型量化用户在特定主题上的偏好程度,并且能将用户主题偏好信息用于提升推荐的性能。最终通过一系列实验验证模型的推荐性能和解释能力。
推荐文章
融合用户和商品评论的双通道CNN推荐算法
CNN推荐算法
推荐系统
特征提取
文本矢量化
抽象特征映射
评分预测
一种融合相似网络的多主题域混合推荐算法
标签质量
稀疏性
主题域
相似网络
偏好信息
一种基于位置社交网络融合多种情景信息的兴趣点推荐模型
协同过滤
兴趣点推荐
位置社交网络
情景建模
主题分析
StackRNN的设计及可解释性研究
循环神经网络
可解释性
记忆网络
自动机理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合评论主题信息的可解释推荐
来源期刊 现代计算机:中旬刊 学科 工学
关键词 主题模型 推荐系统 矩阵分解
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 12-14
页数 3页 分类号 TP274.2
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 侯雲峰 四川大学计算机学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主题模型
推荐系统
矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机:中旬刊
月刊
1007-1423
44-1415/TP
广州市海珠区新港西路135号中山大学园B
46-205
出版文献量(篇)
9067
总下载数(次)
3
总被引数(次)
0
论文1v1指导