基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网的普及和不断发展,用户通过多个社交网络进行社交活动,使用社交网络带来的丰富内容和服务通过识别出不同社交网络上的同一用户,可以有助于进行用户推荐、行为分析、影响力最大化.已有方法主要基于用户的结构特征和属性特征来识别匹配用户,大多仅考虑局部结构,且受已知匹配用户数量的限制,提出一种基于全视角特征结合众包的跨社交网络用户识别方法(overall and crowdsourced user identification algorithm,简称OCSA).首先,利用众包提高已知匹配用户的数量;然后,应用全视角特征评价用户的相似度,以提升用户匹配的准确性;最后,利用两阶段的迭代式匹配方法完成用户识别工作.实验结果表明:该算法可显著提高用户识别的召回率和准确率,并解决了已知匹配用户数量不足时的识别问题.
推荐文章
基于用户兴趣的跨网络用户身份识别算法
跨网络用户身份识别
分块
用户兴趣
用户产生内容
基于用户关系的跨社交网络用户身份关联方法
用户关系
跨社交网络
用户身份关联
网络表示学习
多层感知机
模式无关的社交网络用户识别算法
用户识别
二部图
实例匹配
跨系统个性化
基于隐藏标签节点挖掘的跨网络用户身份识别
用户身份识别
跨网络
社团聚类
隐藏标签节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 全视角特征结合众包的跨社交网络用户识别
来源期刊 软件学报 学科 工学
关键词 多社交网络 用户识别 众包
年,卷(期) 2018,(3) 所属期刊栏目 基于图结构的大数据分析与管理技术专刊
研究方向 页码范围 811-823
页数 13页 分类号 TP311
字数 8937字 语种 中文
DOI 10.13328/j.cnki.jos.005448
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于戈 东北大学计算机科学与工程学院 426 6587 38.0 64.0
2 申德荣 东北大学计算机科学与工程学院 111 1289 18.0 32.0
3 寇月 东北大学计算机科学与工程学院 68 816 12.0 26.0
4 聂铁铮 东北大学计算机科学与工程学院 69 854 13.0 27.0
5 汪潜 东北大学计算机科学与工程学院 1 5 1.0 1.0
6 冯朔 东北大学计算机科学与工程学院 3 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (12)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多社交网络
用户识别
众包
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导