基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
低秩矩阵分解是一种机器学习算法,近年来该算法在地震数据重建问题中得到了广泛的关注,大量的学者针对模型构建和最优化求解等问题开展了研究.但是精确的求解低秩矩阵分解问题还需要知道规则化参数,而规则化参数又与地震数据体的均值和方差等统计学参数直接相关,又因为数据缺失和随机噪音等因素,这些参数是无法精确获取的.针对这一问题,本文引入了贝叶斯概率矩阵分解算法,通过对均值和方差进行随机模拟,并计算相应的概率密度函数,从而实现自适应的选取最优数据重建结果.合成地震记录和实际地震数据测试表明本文方法可以有效提高地震数据插值重建的精度和稳定性.
推荐文章
基于贝叶斯理论快速ERT图像重建算法
电阻层析成像
贝叶斯理论
一步动态
图像重建
基于故障矩阵的贝叶斯故障定位方法
分布式系统
故障定位
推理
故障矩阵
基于朴素贝叶斯算法的社交网络数据挖掘技术研究
朴素贝叶斯算法
社交网络
数据挖掘
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯概率矩阵分解的地震数据重建算法
来源期刊 石油科学通报 学科
关键词 数据重建 机器学习 低秩矩阵分解 贝叶斯原理 马尔科夫蒙托卡罗方法
年,卷(期) 2018,(2) 所属期刊栏目 石油地球物理
研究方向 页码范围 154-166
页数 13页 分类号
字数 6138字 语种 中文
DOI 10.3969/j.issn.2096-1693.2018.02.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(4)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据重建
机器学习
低秩矩阵分解
贝叶斯原理
马尔科夫蒙托卡罗方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油科学通报
季刊
2096-1693
10-1405/TE
大16开
北京市
80-137
2016
chi
出版文献量(篇)
288
总下载数(次)
0
总被引数(次)
432
论文1v1指导