基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
量化择时是量化投资领域的重要组成,主要负责评判何时进行交易.为了验证隐马尔科夫模型(hidden Markov model,HMM)应用到量化择时的可行性,基于股票市场原始数据计算得到候选特征集,并利用HMM对各个单特征进行特征筛选,最后使用选出的特征集训练得到综合模型,预测交易日的市场状态.实验结果表明,基于HMM的交易策略比双均线策略和基于k-均值(k-means)聚类的策略都有更好的表现,且具有较强的识别市场状态、规避系统性风险以及获取超额收益的能力.
推荐文章
基于时变状态转移隐半马尔科夫模型的寿命预测
时变状态转移概率
隐半马尔科夫模型
状态估计
寿命预测
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐马尔科夫模型的市场指数量化择时研究
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 隐马尔科夫模型 市场择时 交易策略
年,卷(期) 2018,(3) 所属期刊栏目 研究论文
研究方向 页码范围 404-412
页数 9页 分类号 TP391
字数 7177字 语种 中文
DOI 10.6043/j.issn.0438-0479.201710011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴清强 厦门大学软件学院 9 33 3.0 5.0
2 傅中杰 厦门大学软件学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (37)
参考文献  (18)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(3)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐马尔科夫模型
市场择时
交易策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导