基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于图像中羽绒形态及其多样性,传统的图像识别方法难以正确识别羽绒分拣图像中的羽绒类型,其识别精度也难以达到实际生产的要求.为解决上述问题,构造了一种用于羽绒类型识别的深度卷积神经网络,并对其权值初始化方法进行了改进.首先利用视觉显著性模型提取羽绒图像的显著部分,然后将图像的显著部分输入到稀疏自动编码器中进行训练,得到一组符合数据集统计特性的卷积核集合.最后采用Inception及其变种模块实现深度卷积神经网络的构造,通过增加网络深度来提高网络的识别精度.试验结果表明,用所构造的深度卷积神经网络对羽绒图像识别的精度较传统卷积神经网络的提高了2.7%,且改进的权值初始化方法使网络的收敛速度提高了25.5%.
推荐文章
基于卷积神经网络的植物图像识别APP开发——"植鉴"
深度学习
TensorFlow框架
Inception-v3网络模型
'植鉴'APP
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的羽绒图像识别
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 深度卷积神经网络 权值初始化 稀疏自编码 视觉显著性 图像识别
年,卷(期) 2018,(2) 所属期刊栏目 智能计算
研究方向 页码范围 11-17
页数 7页 分类号 TP183|TP391.41
字数 3561字 语种 中文
DOI 10.13705/j.issn.1671-6833.2018.02.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨文柱 河北大学网络空间安全与计算机学院 32 570 13.0 23.0
2 王思乐 河北大学网络空间安全与计算机学院 19 73 6.0 7.0
3 刘晴 河北大学网络空间安全与计算机学院 4 14 2.0 3.0
4 崔振超 河北大学网络空间安全与计算机学院 3 24 3.0 3.0
5 张宁雨 河北大学网络空间安全与计算机学院 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (17)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (40)
二级引证文献  (2)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(7)
  • 引证文献(5)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度卷积神经网络
权值初始化
稀疏自编码
视觉显著性
图像识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导