作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用径向基函数(radial basis function,RBF)神经网络模型区分油膜和类油膜,旨在为溢油事故决策支持提供重要前提.首先,对合成孔径雷达(SAR)图像进行特征提取,获得有效的特征向量,并将特征向量作为输入层参数,建立激励函数;其次,利用SAR图像样本训练RBF神经网络模型,将输出值与实际值之间的误差作为约束条件调整权重因子、径向基中心和宽度,根据输出层的线性激活函数值判断溢油情况.实验结果表明,RBF模型在识别油膜与类油膜图像方面准确率超过90%.通过比较RBF和BP神经网络在SAR溢油图像分类上的准确率,也证明了RBF的有效性.
推荐文章
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于新型RBF网络的雷达信号分选识别方法
电子对抗
雷达信号分选识别
径向基函数网络
免疫算法
基于NSCT和支持向量机的SAR图像识别
图像识别
合成孔径雷达
非下采样轮廓波变换
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF网络模型的SAR溢油图像识别方法
来源期刊 大连海事大学学报 学科 交通运输
关键词 溢油 油膜/类油膜 合成孔径雷达(SAR) 图像识别 特征向量 径向基函数网络
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 113-117
页数 5页 分类号 U698.7|X507
字数 语种 中文
DOI 10.16411/j.cnki.issn1006-7736.2018.02.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周慧 大连东软信息学院软件工程系 14 116 4.0 10.0
2 陈澎 大连海事大学航海学院 20 101 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (42)
参考文献  (19)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(6)
  • 参考文献(3)
  • 二级参考文献(3)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
溢油
油膜/类油膜
合成孔径雷达(SAR)
图像识别
特征向量
径向基函数网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连海事大学学报
季刊
1006-7736
21-1360/U
大16开
大连市凌海路1号
1957
chi
出版文献量(篇)
2537
总下载数(次)
4
总被引数(次)
21974
论文1v1指导