基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了增强编码系数的判别性能,提出编码系数矩阵行向量(Profiles)的Fisher判别字典(Pro-files of fisher discriminative dictionary learning,PFDDL)学习算法.首先,根据Profiles能反映原子在字典学习中的使用情况,提出一种自适应的原子类标构造方法.然后,利用Profiles与原子间的一一对应关系,设计Profiles的Fisher判别准则作为判别式项,使得同类原子对应Profiles的类内散度尽可能小,不同类原子对应Profiles的类间散度尽可能大,促使字典中的同类原子尽量表示同类训练样本,提高编码系数的判别性能.在3个人脸和1个手写字体数据库上的实验结果表明,提出的算法比其他稀疏编码和字典学习算法能取得更高的分类性能.
推荐文章
基于双权重约束的判别字典学习算法
字典学习
权重约束
图像分类
基于LLE与Fisher线性判别的人脸识别算法
邻域嵌入算法
Fisher线性判别
人脸识别
ORL人脸图像数据库
基于鉴别性低秩表示及字典学习的鲁棒人脸识别算法
人脸识别
低秩表示
字典学习
稀疏线性表示
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Profiles的Fisher判别约束字典学习算法
来源期刊 数据采集与处理 学科 工学
关键词 字典学习 稀疏表示 Fisher判别 协作表示
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 911-920
页数 10页 分类号 TN911.73
字数 6503字 语种 中文
DOI 10.16337/j.1004-9037.2018.05.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨南粤 广东技术师范学院工业实训中心 36 85 5.0 7.0
2 岑健 广东技术师范学院自动化学院 21 91 3.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (4)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(5)
  • 参考文献(5)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
字典学习
稀疏表示
Fisher判别
协作表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导