基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前面向组织病理图像特征提取的字典学习方法中存在着学习的无病字典与有病字典相似程度高,判别性弱的问题,本文提出一种新的面向判别性特征字典学习方法(Discriminative feature-oriented dictionary learning based on Fisher criterion,FCDFDL).该方法基于Fisher准则构造目标函数的惩罚项,最小化学习字典的类内距离与最大化学习字典的类间距离,大大降低无病字典与有病字典间的相似性.同时,优化学习字典对同类样本的重构性能,并约束学习字典对非同类样本的重构性能.然后,利用本文学习的无病与有病字典对测试样本进行稀疏表示,采用重构误差向量的统计量构造分类器.最后,分别在ADL数据集与BreaKHis数据集上验证了本文方法的有效性.实验结果表明,本文学习字典的判别性更强,获得了更优的分类性能.
推荐文章
基于核字典学习的图像分类
目标分类
稀疏表示
核字典学习
线性鉴别分析
支持向量机
膨胀土判别与分类的Fisher判别分析方法
膨胀土
SPSS
Fisher判别分析
判别与分类
以图像分类为目标的字典学习算法
图像分类
稀疏表示
字典训练
原子
基于Profiles的Fisher判别约束字典学习算法
字典学习
稀疏表示
Fisher判别
协作表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fisher准则下面向判别性特征的字典学习方法及其组织病理图像分类研究
来源期刊 自动化学报 学科
关键词 组织病理图像 Fisher准则 字典学习 判别性特征
年,卷(期) 2018,(10) 所属期刊栏目 论文与报告
研究方向 页码范围 1842-1853
页数 12页 分类号
字数 8049字 语种 中文
DOI 10.16383/j.aas.2017.c160814
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (31)
参考文献  (23)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(8)
  • 参考文献(6)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
组织病理图像
Fisher准则
字典学习
判别性特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
论文1v1指导