基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统空袭主攻方向判断方法对评价指标体系准确性、完备性要求高,对于信息模糊、缺失、矛盾等复杂条件适应性不强的问题,将卷积神经网络引入空袭主攻方向的判断模型,利用其较强的非线性建模能力,对信息模糊、含噪等条件适应强的特点,通过大样本集的训练,获得隐含其中的人的经验、知识等直觉思维.实验结果表明,建立的评判模型具有较强的容错能力和良好的鲁棒性.
推荐文章
并行尺度裁切的深度卷积神经网络模型
并行卷积神经网络
识别
尺度裁切
特征提取
AlexNet
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络和贝叶斯分类器的句子分类模型
深度学习
句子分类
卷积神经网络
主成分分析法
贝叶斯分类器
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 空袭主攻方向的卷积神经网络判断模型
来源期刊 现代防御技术 学科 军事
关键词 防空作战 空袭主攻方向 深度学习 卷积神经网络 模糊综合评判 辅助决策
年,卷(期) 2018,(5) 所属期刊栏目 空天防御体系与武器
研究方向 页码范围 6-12
页数 7页 分类号 E919
字数 4123字 语种 中文
DOI 10.3969/j.issn.1009-086x.2018.05.02
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 滕克难 海军航空工程学院科研部 132 558 11.0 16.0
2 马新星 海军航空工程学院指挥系 22 95 6.0 9.0
3 侯学隆 海军航空工程学院指挥系 56 162 7.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (103)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(6)
  • 参考文献(3)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
防空作战
空袭主攻方向
深度学习
卷积神经网络
模糊综合评判
辅助决策
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代防御技术
双月刊
1009-086X
11-3019/TJ
大16开
北京142信箱30分箱
2-443
1973
chi
出版文献量(篇)
3205
总下载数(次)
12
总被引数(次)
13802
论文1v1指导