基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 人脸图像分析是计算机视觉和模式识别领域的重要研究方向之一,基于人脸图像的血缘关系识别是对给定的一对或一组人脸图像,判断其是否存在某种血缘关系.人脸血缘关系识别不仅在生物特征识别领域有着重要研究价值,而且在社交媒体挖掘、失散家庭成员寻找等社会生活领域中有重要的应用价值.针对当前大多数算法都是基于传统机器学习方法,提出一种采用深度度量学习进行人脸图像血缘关系研究的新方法.方法 目前深度学习算法能很好地理解单张人脸图像,但是多个主体间的关系探究仍然是计算机视觉领域富有挑战性的问题之一.为此,提出一种基于深度度量学习的父母与子女的血缘关系识别方法.首先使用超过5 000 000张人脸图像的样本集训练一个深度卷积神经网络FaceCNN并提取父母与子女的人脸图像深度特征,之后引入判别性度量学习方法,使得具有血缘关系的特征尽可能地靠近,反之则尽可能地远离.然后对特征进行分层非线性变换使其具有更强判别特性.最后根据余弦相似度分别计算父亲、母亲和孩子的相似度并利用相似概率值得到双亲和孩子的综合相似度得分.结果 算法在TSKinFace数据集上验证了FaceCNN提取特征与深度度量学习结合进行血缘关系识别的有效性,最终在该数据集上父母与儿子和女儿的血缘关系识别准确率分别达到87.71%和89.18%,同时算法在进行血缘度量学习和双亲相似度计算仅需要3.616 s.结论 提出的血缘关系识别方法,充分利用深度学习网络良好的表征和学习能力,不仅耗时少,而且有效地提高了识别准确率.
推荐文章
政策血缘关系网络构建与传播演化机理研究
政策体系
政策血缘网络
机器学习
脆性点
结合加权子空间和相似度度量学习的人脸验证方法研究
类内变化
加权子空间
相似度度量学习
人脸验证
深度度量学习综述
深度度量学习
深度学习
机器学习
对比损失
三元组损失
代理损失
softmax分类
温度值
软件故障密度度量研究
软件质量度量
故障密度
代码行
汇编语言
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合深度度量学习的血缘关系识别
来源期刊 中国图象图形学报 学科 工学
关键词 血缘关系识别 卷积神经网络 深度特征 深度学习 度量学习
年,卷(期) 2018,(10) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 1540-1548
页数 9页 分类号 T
字数 4401字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵珠宏 首都师范大学信息工程学院 8 22 2.0 4.0
5 瞿道庆 首都师范大学信息工程学院 1 0 0.0 0.0
6 马琳 首都师范大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
血缘关系识别
卷积神经网络
深度特征
深度学习
度量学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导