作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为充分利用特征的互补优势提高变化检测精度,本文提出了一种多特征融合的损毁建筑物检测方法.首先通过建筑物线划图获取建筑物对象,然后统计对象的灰度直方图和方向梯度直方图(Histogram of Oriented Gradient,HOG),并用G统计量计算地震前后对象的光谱距离;用震前影像训练基于HOG特征的支持向量机(Support Vector Machine,SVM),计算震后对象的HOG特征的响应值;再用Relief方法对光谱距离和HOG特征响应值进行加权融合,最后用FCM方法分类从而检测出损毁建筑物.实验结果表明,本方法充分利用了各特征的优势,有效提高了变化检测的精度.
推荐文章
多尺度显著性引导的高分辨率遥感影像建筑物提取
遥感影像
建筑物提取
显著性检测
多尺度
随机森林
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
基于基元的高分辨率遥感建筑物提取研究
高分辨率遥感
建筑物提取
特征提取
识别
基于不变矩的高分辨率遥感图像的建筑物提取方法
高分辨率遥感图像
边缘检测
不变矩
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合多特征的高分辨率遥感影像震害损毁建筑物检测
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 变化检测 建筑物 G统计量 HOG特征 Relief算法
年,卷(期) 2018,(6) 所属期刊栏目 基金项目专栏
研究方向 页码范围 61-64
页数 4页 分类号 P231
字数 3848字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘莹 中南大学地球科学与信息物理学院 17 170 7.0 13.0
2 李强 中南大学地球科学与信息物理学院 52 251 8.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (46)
二级引证文献  (6)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
变化检测
建筑物
G统计量
HOG特征
Relief算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导