基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大数据时代背景下,随着所获数据数量和维度的不断增加,高维数据的处理成为聚类分析的重点和难点.基于同一类别高维数据通常分布在高维环绕空间的低维子空间这一事实,子空间聚类成为高维数据聚类分析领域的重要方法.稀疏子空间聚类(Sparse Space Clustering,SSC)通过交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对数据矩阵的稀疏自表达系数进行求解,发现分布于低维子空间并集中的数据的稀疏表示并进行聚类.但是ADMM参数多、收敛速度慢,其效率难以满足对大规模数据库进行聚类分析的要求.针对这一问题提出了基于L 0约束的稀疏子空间聚类方法,该方法使用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法求解L 0约束的自表达稀疏重建问题,构建数据集中各数据之间的相关性矩阵,最终对相关性矩阵应用谱聚类方法得到聚类结果.根据OMP算法每次迭代之间的耦合关系对其进行优化,进一步降低了计算复杂度,提高了算法效率.在生成数据和Extended Yale B database人脸数据库的实验结果表明,该算法与SSC相比,在显著减少计算时间的基础上,取得了与SSC相当的聚类准确率.
推荐文章
基于L0稀疏约束的近似稀疏解人耳识别
SRC稀疏分类
OMP算法
L0稀疏约束
基于平滑l0范数正交子空间非负矩阵分解
非负矩阵分解
正交性
聚类
稀疏表示
l0范数
稀疏条件下的重叠子空间聚类算法
重叠子空间聚类
混合范数
重叠概率模型
指数族分布
基于L0范数稀疏约束的地震数据反褶积
地震数据
反褶积
高分辨率
稀疏约束
L0范数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于L0约束的稀疏子空间聚类
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 高维数据处理 稀疏子空间聚类 交替方向乘子法 谱聚类 L0约束 正交匹配追踪
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 23-30
页数 8页 分类号 TP311
字数 5252字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘青山 34 203 8.0 13.0
2 袁晓彤 7 27 2.0 5.0
3 帅惠 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高维数据处理
稀疏子空间聚类
交替方向乘子法
谱聚类
L0约束
正交匹配追踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导