基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
锂离子电池具有优异的性能,在电动汽车中得到广泛应用.剩余容量和剩余寿命预测是电池健康管理的关键所在.支持向量回归机(support vector regression,SVR)作为一种具有良好的非线性、泛化性的预测算法,能有效提高锂离子电池剩余容量和剩余寿命的预测精度.在分析SVR算法原理的基础上,提出了一种基于蚁群算法(ant colony optimization,ACO)的参数优化方法,增强了SVR关键参数全局最优搜索能力,改善了SVR算法的预测能力.与基于网格搜索的SVR算法预测结果比较,仿真结果表明:改进ACO_SVR算法有更好的预测精度,能为电池管理系统提供可靠的数据.
推荐文章
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
基于IGA-MRVR的锂离子电池剩余使用寿命预测
电动汽车
锂电池
剩余使用寿命
多核相关向量回归算法
改进遗传算法优化
预测
基于数据驱动的卫星锂离子电池寿命预测方法
锂离子电池
寿命预测
数据驱动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 锂离子电池剩余容量与剩余寿命预测
来源期刊 电源技术 学科 工学
关键词 电动汽车 支持向量回归机 剩余容量 蚁群算法
年,卷(期) 2018,(10) 所属期刊栏目 研究与设计
研究方向 页码范围 1438-1440
页数 3页 分类号 TM912
字数 2518字 语种 中文
DOI 10.3969/j.issn.1002-087X.2018.10.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (62)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电动汽车
支持向量回归机
剩余容量
蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
论文1v1指导