基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在不同的道路交通视频监控拍摄条件下,识别出同一车辆是车辆重识别需要解决的主要问题.针对车辆重识别时不同拍摄视角、光照等拍摄条件同一车辆的视频监控图像存在差异的问题,提出一种结合特征融合和度量学习的车辆重识别方法.利用Local Maximal Occurrence(LOMO)方法对车辆样本进行特征表示,该特征提取方法可以有效的降低外界拍摄条件对识别率的影响,对提取的特征数据进行LDA降维可减少计算复杂度提高分类精度,并通过马氏距离(Mahalanobis distance)对车辆样本进行精确的重识别.实验结果表明,该方法在车辆重识别方面具有较高的识别率,且对光照变化、视角变化都具有较好的鲁棒性.
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于部件融合特征的车辆重识别算法
车辆重识别
部件检测
特征提取
特征融合
距离度量
基于核学习和距离相似度量的行人再识别
行人再识别
测度学习
核学习
融合整体与局部特征的车辆型号识别方法
车辆型号识别
卷积神经网络
整体特征
局部特征
特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征融合和度量学习的车辆重识别
来源期刊 电子科技 学科 工学
关键词 特征融合 车辆重识别 LOMO算法 马氏距离 度量学习
年,卷(期) 2018,(9) 所属期刊栏目
研究方向 页码范围 29-31,79
页数 4页 分类号 TN919.81
字数 2881字 语种 中文
DOI 10.16180/j.cnki.issn1007-7820.2018.09.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李玉惠 昆明理工大学信息工程与自动化学院 60 219 8.0 12.0
2 王盼盼 昆明理工大学信息工程与自动化学院 15 145 6.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (24)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征融合
车辆重识别
LOMO算法
马氏距离
度量学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导