作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前数据规模不断增大,单机的数据挖掘运行效率低下的问题,本文采用Hadoop平台对聚类K-means算法进行研究以解决此类问题.首先对Hadoop平台的架构和搭建进行了详细描述;其次详细分析了K-means算法;最后给出了算法实现,并对算法进行了实验分析.
推荐文章
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于云计算的并行K-means聚类算法研究
云计算技术
Hadoop
MapReduce
K-means算法
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Hadoop平台的聚类K-means算法的研究
来源期刊 电脑与电信 学科 工学
关键词 Hadoop K-means 数据挖掘
年,卷(期) 2018,(4) 所属期刊栏目 基金项目
研究方向 页码范围 18-20
页数 3页 分类号 TP311.13
字数 1828字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪一百 23 19 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (31)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Hadoop
K-means
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
总被引数(次)
9565
论文1v1指导