基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高目标威胁度评估的精确度,建立反向学习灰狼算法(OGWO)优化小波神经网络的目标威胁评估模型(OGWO-WNN),提出基于该模型的算法.该模型使用反向学习策略(OBL)优化灰狼算法(GWO),通过改进后的灰狼算法优化小波神经网络的各权值和小波基函数的平移因子与伸缩因子,使优化后的小波神经网络能够对威胁度测试样本集作更好的预测.实验结果显示,采用反向学习灰狼算法能够更好地优化小波神经网络的权值与平移、伸缩因子,使建立的小波神经网络目标威胁评估模型具有更高的预测精度和更强的泛化能力,能够精准、有效地实现目标威胁评估.
推荐文章
基于改进Elman神经网络的目标威胁度预测评估
目标威胁度
Elman神经网络
量子粒子群优化算法
防空作战
基于动态神经网络的空战目标威胁评估专家系统
动态神经网络
专家系统
威胁评估
BP算法
基于改进灰狼算法的RBF神经网络研究
灰狼优化算法
非线性
RBF神经网络
权值
分类
基于小波神经网络的化工安全评估
安全评价
小波分析
小波神经网络
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰狼算法与小波神经网络的目标威胁评估
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 目标威胁评估 灰狼优化算法(GWO) 小波神经网络 反向学习策略(OBL) 神经网络
年,卷(期) 2018,(4) 所属期刊栏目 自动化技术
研究方向 页码范围 680-686
页数 7页 分类号 TP391
字数 5130字 语种 中文
DOI 10.3785/j.issn.1008-973X.2018.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘以安 江南大学物联网工程学院 114 862 15.0 23.0
2 傅蔚阳 江南大学物联网工程学院 2 5 1.0 2.0
3 薛松 中国船舶重工集团公司第七研究院电子部 3 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (179)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (65)
二级引证文献  (3)
1956(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(14)
  • 参考文献(0)
  • 二级参考文献(14)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
目标威胁评估
灰狼优化算法(GWO)
小波神经网络
反向学习策略(OBL)
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导