原文服务方: 机械传动       
摘要:
为了实现滚动轴承故障的智能诊断,提出了一种基于经验模态分解(Empirical mode decomposition,EMD)和深度信念网络(Deep belief network,DBN)的轴承故障诊断模型.首先,采用经验模态分解对振动信号进行处理,选取有效的本征模态函数(Intrinsic mode function,IMF)分量及其Hilbert包络谱、边际谱,计算其统计参数,构造原始特征集;然后,提出了一种基于极限学习机(Extreme learning machine,ELM)的特征选择方法(Features selection base on ELM,FSELM),以去除原始特征集中的冗余和干扰特征,选取出故障状态敏感特征;最后,利用深度学习在高维、非线性信号处理方面的优势,完成基于DBN的故障特征自适应分析与故障状态智能识别.通过对12种轴承状态进行分类实验,表明FSELM方法能够选取出故障的敏感统计特征,DBN方法的自适应特性能够有效提高故障状态识别准确率.
推荐文章
基于EMD与PCA分析的滚动轴承故障特征研究
滚动轴承
故障诊断
经验模态分解
主成分分析
基于EMD与功率谱分析的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解方法(EMD)
功率谱
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于改进EMD与谱峭度的滚动轴承故障特征提取
经验模态分解
谱峭度
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD与深度信念网络的滚动轴承故障特征分析与诊断方法
来源期刊 机械传动 学科
关键词 经验模态分解 极限学习机 深度信念网络 滚动轴承 故障诊断
年,卷(期) 2018,(6) 所属期刊栏目 开发应用
研究方向 页码范围 157-163
页数 7页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2018.06.033
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (241)
共引文献  (372)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(9)
  • 参考文献(2)
  • 二级参考文献(7)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(16)
  • 参考文献(0)
  • 二级参考文献(16)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(16)
  • 参考文献(2)
  • 二级参考文献(14)
2012(11)
  • 参考文献(2)
  • 二级参考文献(9)
2013(20)
  • 参考文献(1)
  • 二级参考文献(19)
2014(31)
  • 参考文献(0)
  • 二级参考文献(31)
2015(34)
  • 参考文献(3)
  • 二级参考文献(31)
2016(52)
  • 参考文献(3)
  • 二级参考文献(49)
2017(16)
  • 参考文献(4)
  • 二级参考文献(12)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
经验模态分解
极限学习机
深度信念网络
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导