基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的贝叶斯增量聚类算法需要人为设置参数,且对分布不均衡数据聚类效果不佳的问题,提出一种基于局部分布的贝叶斯自适应共振理论增量聚类算法.首先,利用数据快照读取数据;然后,在无需设置参数的情况下,考虑类簇的局部分布情况,自适应地确定新数据的所属类别,并更新获胜类簇;最后,确定相邻快照中类簇的演化关系.不同数据集的仿真结果表明,所提出的算法在准确性和自适应性方面均有显著提高.
推荐文章
动态贝叶斯网络一种自适应的局部抽样粒子滤波算法
动态贝叶斯网络
局部抽样方法
自适应粒子滤波
粒子滤波
BK算法
一类基于贝叶斯信息准则的k均值聚类算法
空间聚类
k-均值聚类
贝叶斯信息准则(BIC)
密度聚类算法(DBSCCAN)
核心点
基于谱聚类和扩展朴素贝叶斯的混合推荐算法
推荐算法
谱聚类
朴素贝叶斯
增量式更新
基于贝叶斯理论快速ERT图像重建算法
电阻层析成像
贝叶斯理论
一步动态
图像重建
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部分布的贝叶斯自适应共振理论增量聚类算法
来源期刊 控制与决策 学科 工学
关键词 增量聚类算法 贝叶斯 自适应共振理论 不均衡数据
年,卷(期) 2018,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 471-478
页数 8页 分类号 TP273
字数 7308字 语种 中文
DOI 10.13195/j.kzyjc.2017.0049
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王玲 北京科技大学自动化学院 49 475 10.0 20.0
2 孟建瑶 北京科技大学工业过程知识自动化教育部重点实验室 4 17 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (17)
参考文献  (16)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
增量聚类算法
贝叶斯
自适应共振理论
不均衡数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制与决策
月刊
1001-0920
21-1124/TP
大16开
沈阳东北大学125信箱
1986
chi
出版文献量(篇)
7031
总下载数(次)
20
论文1v1指导