基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文章提出一种基于遗传算法及BP神经网络的混合光伏孤岛检测方法,该方法通过遗传算法优化了BP神经网络的初始权值和阈值,有效改进了BP神经网络局部最优的缺点.通过对其检测机理和在Matlab/Simulink实验结果的分析,该方法检测盲区更小,不影响系统电能质量,检测速度更快,误判率低.在DSP中进行了该算法的软硬件实现,实验结果验证了这种方法的正确性和有效性.
推荐文章
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
遗传算法BP神经网络在变形监测中的研究
BP神经网络
遗传算法
建筑基坑
变形监测
预测
遗传算法优化的BP神经网络税收模型
遗传算法
神经网络
税收模型
基于遗传算法的神经网络学习算法研究
遗传算法
神经网络
BP算法
全局最优解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法及BP神经网络的混合孤岛检测方法
来源期刊 可再生能源 学科 工学
关键词 BP神经网络 遗传算法 混合孤岛检测方法 检测盲区
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 701-706
页数 6页 分类号 TK51
字数 4146字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏永洪 南昌大学信息工程学院 40 336 9.0 17.0
2 余运俊 南昌大学信息工程学院 45 502 12.0 21.0
4 万晓凤 南昌大学信息工程学院 52 525 12.0 21.0
5 辛建波 29 135 6.0 10.0
8 衷国瑛 南昌大学信息工程学院 3 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (59)
参考文献  (14)
节点文献
引证文献  (4)
同被引文献  (12)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(10)
  • 参考文献(2)
  • 二级参考文献(8)
2014(15)
  • 参考文献(2)
  • 二级参考文献(13)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
遗传算法
混合孤岛检测方法
检测盲区
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可再生能源
月刊
1671-5292
21-1469/TK
大16开
辽宁省营口市西市区银泉街65号
8-61
1983
chi
出版文献量(篇)
4935
总下载数(次)
14
总被引数(次)
41118
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江西省自然科学基金
英文译名:Natural Science Foundation of Jiangxi Province
官方网址:http://www.jxstc.gov.cn/ReadNews.asp?NewsID=861
项目类型:
学科类型:
论文1v1指导