基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决因新机备件历史消耗数据相对较少而给备件预测工作带来的困难,提出应用最小二乘支持向量机(least squares support vector machine,LS-SVM)回归算法来实现新机备件需求的预测.阐述了最小二乘支持向量机的基本原理,建立了新机备件需求的预测模型,选取核函数,采用LS-SVM对训练样本进行学习,对其网格结构参数进行训练,通过十字交叉验证(cross-validation)和网格搜索(grid-search)确定最优参数,利用训练后的LS-SVM对新机备件需求进行预测,并进行算例仿真.结果表明,LS-SVM在新机备件需求预测上表现优秀.
推荐文章
基于LS-SVM的装备需求时间序列预测
支持向量机
时间序列
混沌
相空间
嵌入维数
基于LS-SVM的间断性需求备件预测
间断性需求
不常用备件
少量历史数据
需求预测
最小二乘支持向量机
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
基于在线LS-SVM的网络预测控制系统
网络控制系统
预测控制
在线最小二乘支持向量机
核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LS-SVM的新机备件需求预测
来源期刊 兵工自动化 学科 航空航天
关键词 新机 备件 历史数据 需求预测 最小二乘支持向量机
年,卷(期) 2018,(7) 所属期刊栏目 系统建模与仿真
研究方向 页码范围 71-73,78
页数 4页 分类号 V19
字数 3106字 语种 中文
DOI 10.7690/bgzdh.2018.07.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (4)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (43)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
新机
备件
历史数据
需求预测
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
兵工自动化
月刊
1006-1576
51-1419/TP
大16开
四川省绵阳市207信箱
1982
chi
出版文献量(篇)
6566
总下载数(次)
20
总被引数(次)
28636
论文1v1指导