基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决现有密度聚类算法中参数设置依赖经验、复杂密度环境下聚类精度不高等问题,提出了基于簇间最大密度连通点进行密度簇分割与合并的模糊聚类方法.基于高斯混合模型计算数据点密度,形成高维离散密度空间,通过低精度网格连续数据空间,结合插值算法赋予空白网格相应密度,构建连续高维密度空间.对数据点按密度排序后,利用能否从大于当前密度的点集中连续可达识别密度极大值点,再以密度序实现极大值点的邻域扩张,以扩张矛盾实现稀疏交界处最大密度连通点识别、密度簇分割.最后基于最大密度连通点计算密度簇间隶属度,设定隶属度阈值,实现相关邻簇的合并,完成聚类.通过与多种密度聚类算法进行仿真对比验证,该算法大大降低了经验参数的依赖性,具有全局统一的合并隶属度,提升了多密度下的类识别能力.
推荐文章
基于数据密度感知的非平衡数据模糊聚类方法
模糊聚类
分布密度
非平衡数据
基于真实核心点的密度聚类方法
密度聚类
模糊边界点
核心点
合并
基于改进模糊均值聚类算法的遥感图像聚类
模糊均值
点密度函数
遥感图像
聚类
有效性指数
最大树模糊聚类算法在商务网站中的应用
模糊聚类
最大树法
商务网站
Web日志
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏交界最大密度连通的模糊聚类方法
来源期刊 计算机工程与应用 学科 工学
关键词 高斯混合模型 簇识别 隶属度 最大密度连通点
年,卷(期) 2018,(14) 所属期刊栏目 大数据与云计算
研究方向 页码范围 82-88
页数 7页 分类号 TP301
字数 5683字 语种 中文
DOI 10.3778/j.issn.1002-8331.1703-0253
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何明 解放军理工大学指挥信息系统学院 57 555 13.0 21.0
2 刘勇 解放军理工大学指挥信息系统学院 23 131 8.0 10.0
3 仇功达 解放军理工大学指挥信息系统学院 2 5 1.0 2.0
4 杨杰 4 17 1.0 4.0
5 祝朝政 解放军理工大学指挥信息系统学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (95)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高斯混合模型
簇识别
隶属度
最大密度连通点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导