基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短期负荷预测容易受到气象等多种因素共同作用的影响,找到关键影响因素是提高短期负荷预测精度的必要手段.电力系统海量数据包含了巨量的运行信息,为挖掘有用信息,提高数据利用效率,提出了一种基于改进SLIQ算法及多粒度气象信息匹配的短期负荷预测方法.采用改进的SLIQ决策树算法对气象负荷信息进行聚类,提取同等气象条件下决定负荷波动的关键因素.由动态灵敏度方法建立短期负荷拐点预测模型,再由熵权法选择最佳预测参考日并预测曲线拐点,并在此基础上提出多粒度气象信息匹配算法进行负荷曲线预测.通过对我国南方某地区的多季节负荷进行仿真预测,计算结果表明在任意气象条件下曲线预测精度均能满足电网要求,证明了所提方法的正确性及普适性.
推荐文章
基于气象因素敏感模型的短期电力负荷预测
人工神经网络
短期电力负荷预测
天气敏感性模型
气象因素
电力系统短期负荷预测的改进BP算法
短期负荷预测
人工神经网络
改进算法
基于改进全局和声搜索算法LSSVM的短期电力负荷预测
电力系统
和声搜索算法
最小二乘支持向量机
负荷预测
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进SLIQ算法及多粒度气象信息匹配的短期负荷预测
来源期刊 电网技术 学科 工学
关键词 短期负荷预测 大数据挖掘 改进SLIQ气象分类器 动态灵敏度 多粒度气象信息匹配
年,卷(期) 2018,(1) 所属期刊栏目 电力系统
研究方向 页码范围 291-300
页数 10页 分类号 TM72
字数 语种 中文
DOI 10.13335/j.1000-3673.pst.2017.0935
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (147)
共引文献  (156)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(10)
  • 参考文献(0)
  • 二级参考文献(10)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(20)
  • 参考文献(0)
  • 二级参考文献(20)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(20)
  • 参考文献(2)
  • 二级参考文献(18)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(13)
  • 参考文献(6)
  • 二级参考文献(7)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
大数据挖掘
改进SLIQ气象分类器
动态灵敏度
多粒度气象信息匹配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电网技术
月刊
1000-3673
11-2410/TM
大16开
北京清河小营东路15号中国电力科学研究院内
82-604
1957
chi
出版文献量(篇)
9975
总下载数(次)
39
总被引数(次)
346228
论文1v1指导