作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习发展至今已经在诸多领域展现出卓越的性能,利用卷积神经网络进行图像识别是当前深度学习的重要应用之一.运用卷积神经网络对大量楼梯图片进行网络训练,使机器人在识别楼梯或类似障碍物时能自主攀爬.采用当前主流深度学习框架Caffe,使用卷积神经网络AlexNet和ResNet对楼梯图片集进行训练和测试.实验得出,ResNet的识别准确率为96.5%,AlexNet识别准确率为92.3%,相较而言,ResNet性能优于AlexNet,可以为机器人对楼梯的自动识别提供一些参考.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的楼梯识别
来源期刊 现代计算机 学科
关键词 深度学习 卷积神经网络 Caffe 楼梯识别
年,卷(期) 2018,(28) 所属期刊栏目 图形图像
研究方向 页码范围 44-47
页数 4页 分类号
字数 2532字 语种 中文
DOI 10.3969/j.issn.1007-1423.2018.28.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曲毅 武警工程大学信息工程学院 33 119 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (114)
共引文献  (497)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(2)
  • 参考文献(0)
  • 二级参考文献(2)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(5)
  • 参考文献(1)
  • 二级参考文献(4)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(20)
  • 参考文献(1)
  • 二级参考文献(19)
2016(17)
  • 参考文献(1)
  • 二级参考文献(16)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
Caffe
楼梯识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机
旬刊
1007-1423
44-1415/TP
16开
广东省广州市
46-121
1984
chi
出版文献量(篇)
11312
总下载数(次)
39
总被引数(次)
33178
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导