基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高小麦麦粒识别的识别率,采用了拉普拉斯卷积网络(Convolution Network Based on Laplacian Eigenmap,LENet)和支持矩阵机(Support Matrix Machines,SMM)分类器相结合的方法对小麦麦粒进行识别.拉普拉斯卷积网络是一种无反馈的轻量型级联卷积神经网络,可以用来提取小麦麦粒的特征,该网络通过拉普拉斯特征映射来学习网络的参数,输出层通过块直方图编码和矩阵化处理实现,最终提取的特征使用SMM分类器进行分类.通过在建立的小麦麦粒图像数据库上的实验表明,该麦粒识别方法要优于一些传统特征提取分类方法,取得了较好的识别效果.
推荐文章
图拉普拉斯矩阵谱特性分析
拉普拉斯矩阵
频谱特性
特征向量
卷积神经网络
图结构特性
MATLAB
几类拉普拉斯整图
拉普拉斯
拉普拉斯多项式
拉普拉斯整图
加权拉普拉斯方法及其理论应用
谱聚类
图分割
图拉普拉斯
偏微分方程
最小割问题
基于小波变换和拉普拉斯算子的细胞图像边缘检测方法
小波变换
拉普拉斯算子
血液细胞
边缘检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于拉普拉斯卷积网络和SMM分类器的小麦麦粒识别
来源期刊 信息技术与网络安全 学科 工学
关键词 麦粒识别 卷积网络 特征提取 支持矩阵机
年,卷(期) 2018,(4) 所属期刊栏目 人工智能
研究方向 页码范围 71-73,78
页数 4页 分类号 TP183
字数 2853字 语种 中文
DOI 10.19358/j.issn.2096-5133.2018.04.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何小海 四川大学电子信息学院 395 2334 21.0 30.0
2 滕奇志 四川大学电子信息学院 198 900 14.0 21.0
3 卿粼波 四川大学电子信息学院 181 565 11.0 15.0
4 董德良 29 122 6.0 10.0
5 康朋新 四川大学电子信息学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (111)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
麦粒识别
卷积网络
特征提取
支持矩阵机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导