基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
软件缺陷预测在提高软件质量、控制与平衡软件成本方面起着举足轻重的作用,是软件工程的活跃领域.研究者们提出了许多预测技术,从不同层面解决了不同的问题.传统软件缺陷预测算法在面对跨项目软件缺陷预测中往往不能得到一个好的结果,原因是训练数据样本(源数据)和测试数据样本(目标数据)之间的分布是不同的.为了解决这个问题,提出了一种基于迁移学习的跨项目软件缺陷预测算法.该算法首先采用了一种不同分布之间的距离度量方式,训练出一种模型来最小化训练数据和测试数据之间的分布差异以及条件分布差异,在映射过后的新的特征空间中两种数据集几乎拥有同样的分布.然后就可以采用传统的机器学习算法进行分类.实验结果表明,该算法具有较好的预测性能.
推荐文章
增加度量元的迁移学习跨项目软件缺陷预测
跨项目
机器学习
软件缺陷预测
迁移学习
分类器
基于Box-Cox转换的集成跨项目软件缺陷预测方法
软件缺陷预测
跨项目软件缺陷预测
集成学习
实证研究
基于实例迁移的跨项目软件缺陷预测
跨项目缺陷预测
迁移学习
基于实例的迁移
自适应增强
基于迁移学习的软件缺陷预测
软件缺陷预测
迁移学习
机器学习
朴素贝叶斯
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于迁移学习的跨项目软件缺陷预测
来源期刊 计算机技术与发展 学科 工学
关键词 软件缺陷预测 迁移学习 特征映射 机器学习
年,卷(期) 2018,(12) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 83-85,90
页数 4页 分类号 TP181
字数 2658字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.12.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 荆晓远 南京邮电大学自动化学院 52 99 5.0 6.0
2 吴飞 南京邮电大学自动化学院 33 90 5.0 7.0
3 张洋洋 南京邮电大学自动化学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (106)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
软件缺陷预测
迁移学习
特征映射
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导