基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蚁群算法已在各种优化问题中取得成功应用,但在求解大规模TSP问题时存在时间、空间复杂性大,搜索过程导向性不强易陷入局部最优和局部搜索策略效果不佳等缺点.针对以上问题,提出了一种具有导向信息素的蚁群算法(Ant Colony Algorithm With Oriented Pheromones,OPACA),利用问题本身的聚类特性简化问题规模后求解全局最优路径,后利用全局最优路径初始化导向信息素,并引入启发式的局部搜索策略求解原问题.仿真实验表明,改进算法的搜索全局最优能力与稳定性显著增强,相比同类算法有更佳的准确率及收敛速度.
推荐文章
求解TSP的改进蚁群算法
蚁群算法(ACA)
旅行商问题
候选城市列表
聚类
蚁群系统(ACS)
求解TSP问题的改进最大最小蚁群算法
蚁群算法
旅行商问题
优质解
最大最小化
基于聚类集成的蚁群算法求解大规模TSP问题
大规模TSP问题
蚁群算法
AP聚类
集成方案
求解质量
基于蚁群算法和免疫算法融合的TSP问题求解
蚁群算法
克隆选择
局部搜索
免疫基因
TSP问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 求解大规模TSP问题的带导向信息素蚁群算法
来源期刊 火力与指挥控制 学科 工学
关键词 蚁群算法 聚类 导向信息素 启发式 旅行商问题
年,卷(期) 2018,(8) 所属期刊栏目 理论研究
研究方向 页码范围 111-115
页数 5页 分类号 TP301|TJ01
字数 4204字 语种 中文
DOI 10.3969/j.issn.1002-0640.2018.08.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓丹 空军工程大学防空反导学院 135 1447 21.0 31.0
2 贾琪 空军工程大学防空反导学院 7 19 3.0 4.0
3 顾竞豪 空军工程大学防空反导学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (92)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群算法
聚类
导向信息素
启发式
旅行商问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
论文1v1指导