基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前关键词识别少资源或零资源场景下的要求, 提出一种基于音频自动分割技术和深度神经网络的关键词识别算法. 首先采用一种基于度量距离的改进型语音分割算法, 将连续语音流分割成孤立音节, 再将音节细分成和音素状态联系的短时音频片段, 分割后的音频片段具有段间特征差异大, 段内特征方差小的特点. 接着利用一种改进的矢量量化方法对音频片段的状态特征进行编码, 实现了关键词集内词的高精度量化编码和集外词的低精度量化编码. 最后以音节为识别单位, 采用压缩的状态转移矩阵作为音节的整体特征, 送入深度神经网络进行语音识别. 仿真结果表明, 该算法能从自然语音流中较为准确地识别出多个特定关键词, 算法易于理解、训练简便, 且具有较好的鲁棒性.
推荐文章
基于神经网络运动轨迹识别系统
神经网络
形心轨迹
轨迹特征
智能识别
基于遗传神经网络的P2P流量识别系统
遗传算法
P2P
流量识别
BP神经网络
基于卷积神经网络的手写体数字识别系统
卷积神经网络
手写体数字
Linux
QT
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的关键词识别系统
来源期刊 计算机系统应用 学科
关键词 识别系统的总体框架如图1所示.
年,卷(期) 2018,(5) 所属期刊栏目 系统建设
研究方向 页码范围 41-48
页数 8页 分类号
字数 7377字 语种 中文
DOI 10.15888/j.cnki.csa.006367
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏秀渝 四川大学电子信息学院 43 183 8.0 11.0
2 孙彦楠 四川大学电子信息学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (19)
二级引证文献  (3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
识别系统的总体框架如图1所示.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导