针对自顶向下显著性目标检测边界模糊及准确率低的问题,提出一种结合条件随机场(conditional random field,CRF)和流行排序(manifold ranking,MR)的自顶向下显著性目标检测方法.首先对图像进行超像素分割,以超像素块特征为节点建立无向图;然后输入具有目标先验的CRF中得到节点的显著值,并通过边缘背景先验MR修改显著值;最后扩展初步显著性目标得到最终显著性图.实验结果表明,在行人、汽车和自行车类目标检测中目标边界明确,与基于CRF的方法相比,该方法在保证运算效率的同时具有更好的鲁棒性.