空间滤波器在提取高光谱图像纹理信息过程中容易丢失空间自相关信息,导致植被分类精度不高.针对当前方法的不足,提出一种空间自相关信息的高光谱图像分类算法(Classification of hyperspectral image based on spatial autocorrelation information,CHISCI).该方法先用域转换线性插值卷积滤波(Domain transform filter of interpolated convolution,DTFOIC)对高光谱全波段图像提取空间自相关信息,然后对高光谱数据进行主成分分析(Principal component analysis,PCA)降维后的前部分主成分提取空间自相关信息,两种空间自相关信息线性融合后交由支持向量机(Support vector machine,SVM)完成分类.试验表明,相比使用光谱信息、高光谱降维、空谱结合的SVM分类方法和边缘保持滤波以及递归滤波的方法,所提出的CHISCI方法对高光谱图像的植被分类精度有较大提高,在训练样本仅为6%和1%的情况下,对印第安农林和萨里斯山谷数据集分类的总体分类精度分别达到96.16%和98.67%,比其他算法高出2~16个百分点,验证了该方法的有效性.