针对前馈神经网络预测粮食产量的方法易陷入局部最优的问题,提出一种基于粒子群算法和人工蜂群算法的改进BP神经网络模型.利用粒子群优化算法和人工蜂群算法在全局搜索能力上的不同优势,结合两者对BP神经网络的权值和阈值进一步优化,以提升粮食产量预测模型的准确性与鲁棒性.给出基于粒子群和人工蜂群混合的ABPSO算法的具体实现,并选择1979年至2012年我国粮食的产量及影响其产量的8项因素作为数据集进行试验.结果表明:改进的BP神经网络能够较好地预测国内近几年的粮食产量变化趋势;相比未优化的BP模型,新算法预测误差平均值由847780 t降低至240320 t,误差范围由1894200 t降低至586800 t.