基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深度生成模型、迁移学习以及一些高效特征提取网络3个方面进行全面剖析.首先,探讨了以GAN(generative adversarial network)和VAE(variational autoencoder)及其衍生结构在遥感技术中分类、变化检测上的应用;然后,在基于知识复用的辅助训练策略——迁移学习中主要从基于网络的迁移和基于数据结构的迁移两大类应用展开讨论;最后探讨了结合半监督学习和主动学习等思想的深度学习算法以及一些新颖的网络结构的应用.虽然深度学习在遥感技术领域发挥了极大的优势,性能也普遍超过了浅层的学习器,但结合物理模型的分析和高性能的实用性遥感应用仍需进一步发展与研究.
推荐文章
深度学习在遥感影像分类中的研究进展
深度置信网
卷积神经网络
栈式自动编码器
遥感影像分类
深度学习
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
基于半监督学习的Web页面内容分类技术研究
Web页面内容分类
半监督学习
半监督分类
智能优化
Dirichlet分布
基于朴素贝叶斯的半监督学习遥感影像分类
朴素贝叶斯
半监督学习
遥感影像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合深度学习和半监督学习的遥感影像分类进展
来源期刊 中国图象图形学报 学科 工学
关键词 遥感影像分类 深度学习 深度生成模型 半监督学习 迁移学习
年,卷(期) 2019,(11) 所属期刊栏目 学者观点
研究方向 页码范围 1823-1841
页数 19页 分类号 TP751
字数 14449字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜培军 南京大学自然资源部卫星测绘技术与应用重点实验室 29 283 9.0 16.0
2 谭琨 华东师范大学地理信息科学教育部重点实验室 39 553 11.0 23.0
4 王雪 华东师范大学地理信息科学教育部重点实验室 19 86 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (222)
共引文献  (98)
参考文献  (63)
节点文献
引证文献  (4)
同被引文献  (32)
二级引证文献  (1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(15)
  • 参考文献(0)
  • 二级参考文献(15)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(14)
  • 参考文献(0)
  • 二级参考文献(14)
2014(22)
  • 参考文献(1)
  • 二级参考文献(21)
2015(29)
  • 参考文献(1)
  • 二级参考文献(28)
2016(26)
  • 参考文献(1)
  • 二级参考文献(25)
2017(53)
  • 参考文献(12)
  • 二级参考文献(41)
2018(46)
  • 参考文献(32)
  • 二级参考文献(14)
2019(16)
  • 参考文献(16)
  • 二级参考文献(0)
2019(17)
  • 参考文献(16)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遥感影像分类
深度学习
深度生成模型
半监督学习
迁移学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导