基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对破损区域面积大的图像,在现有的图像修复方法中,往往会产生与周围区域不一致的扭曲结构或模糊的纹理.随着深度学习的发展和应用,基于生成对抗网络的方法,通过调节可用数据来生成缺失的内容.对于一个数据集,先将数据集中的样本解析成概率分布中的样本点,利用生成对抗网络快速生成出大量伪造图像,通过搜索最接近的已损坏图像的编码,然后这个编码通过生成模型来推断缺失内容.在此基础上,结合了语义损失函数和感知损失函数,并通过改进激活函数Sigmoid函数扩大了不饱和区域,解决了梯度易消失的问题.通过实验表明,方法成功的预测了图像中大面积缺失区域的信息,并实现了照片的真实感,比先前的方法产生更清晰更连贯的结果.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的数字图像修复技术
来源期刊 电子测量与仪器学报 学科 工学
关键词 图像修复 深度学习 生成对抗网络 生成模型 损失函数
年,卷(期) 2019,(1) 所属期刊栏目 学术论文
研究方向 页码范围 40-46
页数 7页 分类号 TP391|TN0
字数 语种 中文
DOI 10.13382/j.jemi.B1801710
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李昕 31 398 10.0 19.0
2 李雪瑾 1 0 0.0 0.0
3 徐艳杰 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (237)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像修复
深度学习
生成对抗网络
生成模型
损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导