作者:
原文服务方: 水下无人系统学报       
摘要:
为了保证自主水下航行器(AUV)能够精确潜入固定深度海域,AUV垂平面控制技术非常重要.在基于比例-积分-微分(PID)控制设计控制器的过程中,为保证控制器能够较好地控制AUV跟踪指定轨迹,需要对PID参数进行调整,但参数设定需要反复尝试,不仅耗费大量时间,而且不能保障其最优效果.为解决这一问题,提出了一种基于径向基函数(RBF)神经网络的参数自整定PID控制方法.首先建立AUV垂平面运动模型,然后设计RBF神经网络结构,基于梯度下降方法给出了RBF参数以及PID参数的迭代公式,并设计离散式PID控制器,最后通过数值仿真验证了所提方法的有效性.仿真结果说明,AUV可以在较短时间内达到指定深度,且PID各参数均能完成自整定.
推荐文章
基于改进模糊神经网络的 PID 参数自整定
PID整定
Mamdani模型
模糊神经网络
混沌遗传算法
BP算法
基于RBF神经网络动态辨识的自整定PID控制策略
RBF神经网络
最近邻聚类算法
正向辨识
PID控制
在线整定
基于RBF神经网络的PID在线整定及仿真
RBF神经网络
梯度下降法
PID整定
MATLAB仿真
基于模糊神经网络的参数自整定PID控制系统设计
模糊神经
自适应PID
遗传算法
建模
仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络参数自整定的AUV深度控制
来源期刊 水下无人系统学报 学科
关键词 自主水下航行器 深度控制 径向基函数神经网络 比例-积分-微分控制 自整定
年,卷(期) 2019,(3) 所属期刊栏目 基础研究
研究方向 页码范围 284-289
页数 6页 分类号 TJ630.33|U674.941|TP273
字数 语种 中文
DOI 10.11993/j.issn.2096-3920.2019.03.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜度 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (22)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自主水下航行器
深度控制
径向基函数神经网络
比例-积分-微分控制
自整定
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水下无人系统学报
双月刊
1673-1948
61-1509/TJ
大16开
1993-01-01
chi
出版文献量(篇)
1591
总下载数(次)
0
总被引数(次)
5946
论文1v1指导