原文服务方: 水利水运工程学报       
摘要:
河道山地灾害如泥石流、滑坡、山洪、水土流失等严重危害着河道周边公路、铁路、桥梁、大型水利工程等重要基础设施的安全.快速识别已发生的河道山地灾害意义重大,而传统巡检方式具有极高的危险性和滞后性,迫切需要新方法来替代.以深度卷积神经网络为代表的深度学习技术具有局部感知、参数共享、池化等多个特性,相比传统机器学习方法具有更强大的特征学习和特征表达能力.在深度学习开源框架下,利用大量河道山地灾害图片数据完成了Caffenet等多个深度模型的训练,并结合迁移学习方法,使河道山地灾害识别准确率最终达到90%以上,为河道山地灾害快速识别、群防群测体系的完善提供了新思路.
推荐文章
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
改进卷积神经网络的手写试卷分数识别方法
分数统计
数字识别
卷积神经网络
主成分分析
贝叶斯分类器
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 河道山地灾害的卷积神经网络快速识别方法
来源期刊 水利水运工程学报 学科
关键词 河道山地灾害 卷积神经网络 图像识别 川藏公路
年,卷(期) 2019,(2) 所属期刊栏目 2018水库大坝安全与风险管理国际研讨会论文
研究方向 页码范围 65-70
页数 6页 分类号 TU43
字数 语种 中文
DOI 10.16198/j.cnki.1009-640X.2019.02.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李俊杰 大连理工大学建设工程学部水利工程学院 65 485 12.0 20.0
3 康飞 大连理工大学建设工程学部水利工程学院 27 157 6.0 12.0
6 赵鹏辉 大连理工大学建设工程学部水利工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (91)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
河道山地灾害
卷积神经网络
图像识别
川藏公路
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水利水运工程学报
双月刊
1009-640X
32-1613/TV
大16开
1979-01-01
chi
出版文献量(篇)
1737
总下载数(次)
0
总被引数(次)
13459
论文1v1指导