针对灰狼优化(grey wolf optimization,GWO)算法易陷入局部最优和收敛精度差的问题,提出了一种基于对立搜索和Levy飞行策略的改进灰狼优化算法-OLGWO算法.在算法初始化阶段,采用对立搜索策略以缩小可行解范围;在灰狼位置更新过程中,为避免算法陷入局部最优采用了Levy飞行策略.4个标准测试函数的仿真实验表明,所提OLGWO算法在收敛速度及求解精度方面均优于GWO算法,可以较快且准确地搜索到目标函数的最优值.基于OLGWO算法对隧道射线跟踪传播模型进行校正的结果表明,校正后的模型在均方根误差和线性相关性方面具有较优的性能,能够实现铁路隧道环境中信号接收功率的精确预测.