基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对灰狼优化(grey wolf optimization,GWO)算法易陷入局部最优和收敛精度差的问题,提出了一种基于对立搜索和Levy飞行策略的改进灰狼优化算法-OLGWO算法.在算法初始化阶段,采用对立搜索策略以缩小可行解范围;在灰狼位置更新过程中,为避免算法陷入局部最优采用了Levy飞行策略.4个标准测试函数的仿真实验表明,所提OLGWO算法在收敛速度及求解精度方面均优于GWO算法,可以较快且准确地搜索到目标函数的最优值.基于OLGWO算法对隧道射线跟踪传播模型进行校正的结果表明,校正后的模型在均方根误差和线性相关性方面具有较优的性能,能够实现铁路隧道环境中信号接收功率的精确预测.
推荐文章
基于灰狼算法的改进研究
灰狼算法
收敛因子
动态权重
收敛速度
基于改进灰狼算法的RBF神经网络研究
灰狼优化算法
非线性
RBF神经网络
权值
分类
基于改进灰狼优化的UWSNs分簇路由算法
水下传感器网络
改进灰狼优化
适应度函数
分簇算法
基于改进灰狼优化算法的网络流量预测模型
网络流量预测
小波包分解
灰狼横纵多维混沌寻优算法
Elman神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进灰狼算法的铁路隧道射线跟踪模型校正
来源期刊 电波科学学报 学科 工学
关键词 灰狼优化算法 射线跟踪 传播模型 校正 铁路通信
年,卷(期) 2019,(2) 所属期刊栏目 论文
研究方向 页码范围 165-171
页数 7页 分类号 TN929.5
字数 4358字 语种 中文
DOI 10.13443/j.cjors.2018071202
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢健骊 兰州交通大学电子与信息工程学院 29 74 5.0 7.0
2 李翠然 兰州交通大学电子与信息工程学院 46 134 8.0 10.0
3 张双勤 兰州交通大学电子与信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (21)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰狼优化算法
射线跟踪
传播模型
校正
铁路通信
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电波科学学报
双月刊
1005-0388
41-1185/TN
大16开
河南市新乡138信箱3分箱
36-260
1986
chi
出版文献量(篇)
3417
总下载数(次)
11
总被引数(次)
30224
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导