基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统广义标签多伯努利滤波算法因需已知新生目标状态分布信息而导致在实际场景中估计精度下降的问题,提出一种新的自适应目标新生δ广义标签多伯努利算法.该算法以广义标签多伯努利滤波器为基础,利用上一时刻接收到的量测信息反推当前时刻新生目标的存活概率和状态信息,并给出其标签伯努利随机集的参数表示.仿真结果表明,所提算法对于未知新生目标先验信息的复杂运动场景具有较强的多目标跟踪鲁棒性,且跟踪精度以及时间耗费均优于传统广义标签多伯努利滤波器.
推荐文章
箱粒子广义标签多伯努利滤波的目标跟踪算法
目标跟踪
随机有限集
广义标签多伯努利滤波
箱粒子滤波
标签多伯努利机动目标跟踪与分类算法
多目标跟踪
机动目标
分类
标签多伯努利
目标类别
高斯混合扩展目标多伯努利滤波器
扩展目标跟踪
随机有限集
数据关联
高斯混合
δ-广义标记多伯努利滤波器的非线性应用扩展
δ-广义标记多伯努利
积分卡尔曼
高斯混合
多目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应目标新生δ广义标签多伯努利滤波算法
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 多目标跟踪 随机有限集 δ广义标签多伯努利 自适应目标新生
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 12-16
页数 5页 分类号 TN953
字数 3884字 语种 中文
DOI 10.19665/j.issn1001-2400.2019.02.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李翠芸 西安电子科技大学电子工程学院 21 198 9.0 13.0
2 陈东伟 西安电子科技大学电子工程学院 1 1 1.0 1.0
3 石仁政 西安电子科技大学电子工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (6)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标跟踪
随机有限集
δ广义标签多伯努利
自适应目标新生
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导