原文服务方: 控制理论与应用       
摘要:
深度神经网络通常是过参数化的,并且深度学习模型存在严重冗余,这导致了计算和存储的巨大浪费.针对这个问题,本文提出了一种基于改进聚类的方法来对深度神经网络进行压缩.首先通过剪枝策略对正常训练后的网络进行修剪,然后通过K–Means++聚类得到每层权重的聚类中心从而实现权值共享,最后进行各层权重的量化.本文在LeNet,AlexNet和VGG–16上分别进行了实验,提出的方法最终将深度神经网络整体压缩了30到40倍,并且没有精度损失.实验结果表明通过基于改进聚类的压缩方法,深度神经网络在不损失精度的条件下实现了有效压缩,这使得深度网络在移动端的部署成为了可能.
推荐文章
深度神经网络的压缩研究
神经网络
压缩
网络删减
参数共享
面向嵌入式应用的深度神经网络压缩方法研究
深度神经网络
压缩
奇异值分解(SVD)
网络剪枝
基于免疫聚类的神经网络集成的研究
神经网络集成
免疫聚类
分类
中医诊断
神经网络模型压缩方法综述
神经网络
模型压缩
矩阵分解
参数共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进聚类的深度神经网络压缩实现方法
来源期刊 控制理论与应用 学科
关键词 深度神经网络 剪枝 K–Means++聚类 深度网络压缩
年,卷(期) 2019,(7) 所属期刊栏目 论文与报告
研究方向 页码范围 1130-1136
页数 7页 分类号
字数 语种 中文
DOI 10.7641/CTA.2018.70592
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘涵 西安理工大学自动化与信息工程学院 71 981 16.0 27.0
2 王宇 西安理工大学自动化与信息工程学院 5 9 2.0 2.0
3 马琰 西安理工大学自动化与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (70)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1956(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(12)
  • 参考文献(4)
  • 二级参考文献(8)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度神经网络
剪枝
K–Means++聚类
深度网络压缩
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
1984-01-01
chi
出版文献量(篇)
4979
总下载数(次)
0
总被引数(次)
72515
论文1v1指导