基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于安全知识图谱的网络安全威胁情报分析能够细粒度地分析多源威胁情报数据,因此受到广泛关注.传统的命名实体识别方法难以识别网络安全领域中新的或中英文混合的安全实体,且提取的特征不充分,因此难以准确地识别网络安全实体.在深度神经网络模型的基础上,提出一种结合特征模板的CNN-BiLSTM-CRF的网络安全实体识别方法,利用人工特征模板提取局部上下文特征,进一步利用神经网络模型自动提取字符特征和文本全局特征.实验结果表明,在大规模网络安全数据集上,提出的网络安全实体识别方法,相关评价指标优于其他算法,F值达到86%.
推荐文章
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于神经网络数字识别方法的研究
数字识别
神经网络
粗糙集
特征提取
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于Hopfield神经网络的面目标特征识别方法研究
面目标
Hopfield神经网络
特征识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的网络安全实体识别方法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 网络安全实体识别 特征模板 CNN BiLSTM CRF
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 29-40
页数 12页 分类号 TP391
字数 8614字 语种 中文
DOI 10.13232/j.cnkij.nju.2019.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 申国伟 贵州大学计算机科学与技术学院 10 12 2.0 3.0
3 陈艳平 贵州大学计算机科学与技术学院 9 13 2.0 3.0
7 秦娅 贵州大学计算机科学与技术学院 2 9 2.0 2.0
11 赵文波 贵州大学计算机科学与技术学院 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (321)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (22)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(14)
  • 参考文献(0)
  • 二级参考文献(14)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络安全实体识别
特征模板
CNN
BiLSTM
CRF
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导