基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
2014年提出的生成对抗网络(Generative Adversarial Networks,GAN)是近年来神经网络领域中为数不多的一项新锐技术.GAN在常见生成模型的基础上增加了一个判别模型,以形成巧妙的对抗学习机制,使它能够产生更高质量的图像.近年来各种改进型GAN在图像处理领域得到广泛应用,不但覆盖了几乎所有传统图像处理领域,还包括一些新应用,如图像编辑、图像翻译、风格转移等,普遍取得了胜过传统方法的良好结果.文中在简要分析GAN的系统结构、对抗生成和网络训练的基础上,重点介绍了为提高GAN性能、克服现存缺陷和满足不同应用而出现的多种改进型GAN,如DC-GAN、W-GAN、Big-GAN等.尽管如此,目前GAN尚处于初始发展阶段,将来的前途不可估量.
推荐文章
生成对抗网络图像类别标签跨模态识别系统设计
生成对抗网络
图像类别标签
跨模态识别
系统设计
卷积神经网络
训练模型
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 生成对抗网络图像处理综述
来源期刊 南京邮电大学学报(自然科学版) 学科 工学
关键词 深度学习 生成对抗网络 图像处理 生成模型 判别模型
年,卷(期) 2019,(3) 所属期刊栏目 通信与电子
研究方向 页码范围 1-12
页数 12页 分类号 TN919.8
字数 11721字 语种 中文
DOI 10.14132/j.cnki.1673-5439.2019.03.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐贵进 南京邮电大学江苏省图像处理与图像通信重点实验室 34 111 6.0 8.0
2 朱秀昌 南京邮电大学江苏省图像处理与图像通信重点实验室 193 1476 17.0 28.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (5)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(6)
  • 引证文献(6)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
生成对抗网络
图像处理
生成模型
判别模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京邮电大学学报(自然科学版)
双月刊
1673-5439
32-1772/TN
大16开
南京市亚芳新城区文苑路9号
1960
chi
出版文献量(篇)
2234
总下载数(次)
13
总被引数(次)
14649
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导