原文服务方: 西安交通大学学报(医学版)       
摘要:
目的 探讨卷积神经网络在胸部数字X线(digital radiology,DR)图像质量控制(quality control,QC)工作中的应用价值.方法 纳入不同机器拍摄的胸部DR图像1 618张进行分级标记,其中1 294张作为训练集用于卷积神经网络,324张作为测试集用于检测效果;将检测结果用二分类和四分类的混淆矩阵计算敏感度、特异度、阳性预测值(positive predicted value,PPV)、阴性预测值(negative predicted value,NPV)和总准确率.结果 二分类结果:敏感度为73.53%,特异度为97.93%,PPV为80.65%,NPV为96.93%,总准确率95.37%;四分类结果的总准确率75.93%.二分类结果总准确率高于四分类结果(P<0.05).结论 卷积神经网络可满足影像QC工作达到最低标准的要求,但要进行高级别图像质量评分和考核等管理工作,还需更大的数据集和更加细致的特征标记.
推荐文章
深度卷积神经网络在放射治疗计划图像分割中的应用
深度学习
卷积神经网络
医学影像分割
相似度系数
放射治疗
基于卷积神经网络的驾驶辅助系统设计
卷积神经网络
驾驶辅助系统
导航架构
巡航控制
激活函数
行车图像
Job请求
辅助波
基于卷积神经网络的对比度失真图像质量评价
视觉质量评价
对比度失真
卷积神经网络
卷积层
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络在辅助胸部数字X线图像质量控制工作的应用价值
来源期刊 西安交通大学学报(医学版) 学科
关键词 人工智能 卷积神经网络 机器学习 胸部DR 质量控制
年,卷(期) 2019,(5) 所属期刊栏目 临床研究
研究方向 页码范围 784-788
页数 5页 分类号 R445.4|TP181
字数 语种 中文
DOI 10.7652/jdyxb201905023
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (117)
共引文献  (44)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(26)
  • 参考文献(3)
  • 二级参考文献(23)
2016(29)
  • 参考文献(5)
  • 二级参考文献(24)
2017(10)
  • 参考文献(3)
  • 二级参考文献(7)
2018(11)
  • 参考文献(6)
  • 二级参考文献(5)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能
卷积神经网络
机器学习
胸部DR
质量控制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报(医学版)
双月刊
1671-8259
61-1399/R
大16开
1937-01-01
chi
出版文献量(篇)
4401
总下载数(次)
0
总被引数(次)
26571
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导