为了提高高光谱遥感图像的分类精度,通过结合像元邻域谱与概率协同表示方法,提出了一种基于空间信息与光谱信息的分类方法.首先采用插值方法生成像元的邻域谱,然后用概率协同表示方法将待测样本进行分类.用所提出的方法在AVIRIS Indian Pines和Salinas scene高光谱遥感数据库上进行分类实验,并和主成分分析、支持向量机、稀疏表示分类器和协同表示分类器方法进行了比较.结果表明,所提出的方法在AVIRIS Indian Pines数据库上识别精度比主成分分析法高约17%,其识别精度和kappa系数都优于另外4种方法.该方法是一种较好的高光谱遥感图像分类方法.