基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对广义非线性模型的参数估计问题,提出了从参数的条件后验分布中抽取观测值来估计参数值的Bayes估计法.利用贝叶斯统计分析中蒙特卡洛抽样方法中的M-H算法和Gibbs抽样算法相结合的混合算法进行分析,通过参数的条件后验分布抽取出每次迭代时的参数值,并利用参数的样本路径图和均值遍历图验证迭代时马尔科夫链的收敛性;计算马尔科夫链达到收敛后参数的后验均值得到参数的Bayes估计;通过对产品销售数据的实证分析,比较Bayes估计和极大似然估计的偏差,验证M-H算法和Gibbs抽样算法在对广义非线性模型的参数进行Bayes估计时的简洁性、有效性以及可行性.
推荐文章
非线性广义文克尔模型探讨
文克尔模型
非线性
基床系数
非线性测量误差模型的Bayes估计
非线性模型
测量误差
Bayes估计
复合LINEX对称损失下广义Pareto分布形状参数θ的Bayes估计
广义Pareto分布
复合LINEX对称损失函数
Bayes估计
E-Bayes估计
广义线性回归模型的Moore-Penrose逆阵岭估计
岭估计
Moore-Penrose广义逆
Schur分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 广义非线性模型的Bayes估计
来源期刊 重庆工商大学学报(自然科学版) 学科 数学
关键词 广义非线性模型 Bayes估计 Gibbs抽样算法 M-H算法
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 32-37,72
页数 7页 分类号 O212
字数 4952字 语种 中文
DOI 10.16055/j.issn.1672-058X.2019.0001.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈萍 南京理工大学理学院 43 144 5.0 11.0
2 刘洋洋 南京理工大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (4)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广义非线性模型
Bayes估计
Gibbs抽样算法
M-H算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导