基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种将融合单演二值编码(MBC)和深度信念网络(DBN)相结合的人脸识别算法,首先利用MBC算法编码图像的幅值、方向和相位信息,得到MBCF人脸特征;然后通过训练四层DBN网络进行模式识别;该算法在ORL人脸数据库上取得了99.17%的高识别率.
推荐文章
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于改进的稀疏深度信念网络的人脸识别方法
稀疏编码
特征提取
深度学习
深度信念网络
稀疏受限玻尔兹曼机
深度稀疏自编码网络融合多LBP特征用于单样本人脸识别
稀疏自编码
单样本人脸识别
空-频特征
多特征融合
二维离散小波变换
数据库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于融合单演二值编码和深度信念网络的人脸识别
来源期刊 云南师范大学学报(自然科学版) 学科 工学
关键词 人脸识别 单演信号 融合单演二值编码(MBC) 深度信念网络(DBN)
年,卷(期) 2019,(4) 所属期刊栏目 计算机科学与应用
研究方向 页码范围 40-46
页数 7页 分类号 TP391
字数 4012字 语种 中文
DOI 10.7699/j.ynnu.ns-2019-051
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨明 4 7 1.0 2.0
2 周慧敏 中北大学理学院 2 5 1.0 2.0
3 刘奇 1 1 1.0 1.0
4 姜飞 中北大学理学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (276)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(4)
  • 参考文献(1)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(19)
  • 参考文献(1)
  • 二级参考文献(18)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
单演信号
融合单演二值编码(MBC)
深度信念网络(DBN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南师范大学学报(自然科学版)
双月刊
1007-9793
53-1046/N
大16开
云南昆明市一二一大街298号
64-74
1958
chi
出版文献量(篇)
2229
总下载数(次)
5
总被引数(次)
10561
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导