原文服务方: 计算机应用研究       
摘要:
为了更好地利用单演幅值和区域主方向信息,分别提出了一种单演韦伯差异激励局部块二值模式和单演区域主方向模式,并在此基础上进一步采用分块子模式策略融合两种特征。该方法首先对单演幅值求取差异激励,将差异激励分解为正值和幅值图像;然后对正值和幅值图像采用基于分块的局部二值模式编码,采用主成分分析方法求取单演区域主方向,并对主方向进行均匀量化,再采用异或编码。在获取两种特征后,采用分块子模式的策略对两种特征进行加权融合。在AR和CAS-PEAL上的实验表明,MWLMBP和MDOP两种特征提取方法能够有效提取图像的判
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
一种基于特征融合的人脸识别新方法
特征融合
广义线性鉴别分析
特征抽取
人脸识别
基于稀疏表示与特征融合的人脸识别方法
人脸识别
稀疏表示
低秩恢复
特征融合
鲁棒性
泛化性能
一种基于虹膜和人脸的多生物特征融合方法
虹膜
人脸
融合
最小最大概率机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种融合多模式单演特征的人脸识别方法
来源期刊 计算机应用研究 学科
关键词 单演信号 韦伯 局部二值 主成分分析 区域主方向
年,卷(期) 2014,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 1246-1251
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.04.070
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (19)
参考文献  (10)
节点文献
引证文献  (8)
同被引文献  (19)
二级引证文献  (34)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(8)
  • 引证文献(3)
  • 二级引证文献(5)
2018(11)
  • 引证文献(1)
  • 二级引证文献(10)
2019(15)
  • 引证文献(0)
  • 二级引证文献(15)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
单演信号
韦伯
局部二值
主成分分析
区域主方向
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导