作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于一维卷积神经网络对齿轮箱进行故障诊断的方法;建立了一维卷积神经网络结构模型;优化了网络参数;设计了基于工程数据源的实验方案;探究了一维卷积神经网络对齿轮不同故障的分类准确度.实验表明:在识别齿轮箱的故障模式的过程中,一维卷积神经网络能准确区分齿轮的故障与正常状态,较为准确地分类出单独故障,但对于复合故障的分类能力下降.
推荐文章
基于RBF神经网络的齿轮箱故障诊断
BP神经网络
径向基函数神经网络
故障诊断
齿轮箱
齿轮箱故障诊断灰色神经网络模型的研究
齿轮箱
灰色神经网络
故障诊断
带偏差单元递归神经网络齿轮箱故障诊断
坦克传动系统
齿轮箱
故障诊断
递归神经网络
基于LVQ神经网络风电机组齿轮箱故障诊断研究
LVQ神经网络
BP神经网络
风电机组
齿轮箱
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一维卷积神经网络的齿轮箱故障诊断研究
来源期刊 测试技术学报 学科 工学
关键词 一维卷积神经网络 齿轮箱 故障诊断
年,卷(期) 2019,(4) 所属期刊栏目 故障诊断与无损检测
研究方向 页码范围 302-306
页数 5页 分类号 TP183|TH17
字数 2761字 语种 中文
DOI 10.3969/j.issn.1671-7449.2019.04.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马野 海军大连舰艇学院导弹与舰炮系 39 237 6.0 14.0
2 赵璐 海军大连舰艇学院导弹与舰炮系 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (305)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
一维卷积神经网络
齿轮箱
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试技术学报
双月刊
1671-7449
14-1301/TP
大16开
太原13号信箱
22-14
1986
chi
出版文献量(篇)
2837
总下载数(次)
7
总被引数(次)
13975
论文1v1指导