基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于K-Means的颜色量化算法的岩石图像预处理方法,利用K-Means自动将图像中相似的颜色合并为一种颜色,减少了岩石图像中的无用颜色.对于颜色量化,假设RGB岩石图像中的每个像素点都有自己的颜色,并且每个像素点都有对应坐标,使用欧几里得距离公式计算每个像素点之间的距离,最后利用K-Means算法对这些有特定颜色的坐标点进行无监督聚类,从而实现颜色的量化.应用结果表明,将基于K-Means的颜色量化算法用在岩石图像中,可以减少岩石图像中的颜色数量,且能在较低性能的计算机设备中很好地再现岩石图像,同时也能提高岩石图像处理的效率.
推荐文章
基于K-means岩石铸体图像分割及孔隙度的计算
彩色分割
K-means聚类
L*a*b*颜色空间
形态学处理
孔隙度
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
Regional Merge K-means图像分割算法及其质量评价
图像分割
聚类算法
RegionalMergeK-means(RMK)
质量评价
基于K-means聚类算法的图像分割方法比较及改进
图像分割
RGB颜色空间
YUV颜色空间
K-均值聚类
二维信息熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-Means的颜色量化算法在岩石图像预处理中的应用
来源期刊 西安石油大学学报(自然科学版) 学科 工学
关键词 岩石图像处理 颜色量化 K-Means 像素点 聚类
年,卷(期) 2019,(3) 所属期刊栏目 计算机及新技术应用
研究方向 页码范围 114-119
页数 6页 分类号 TE19|TP183
字数 3625字 语种 中文
DOI 10.3969/j.issn.1673-064X.2019.03.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程国建 西安石油大学计算机学院 123 847 14.0 25.0
2 魏珺洁 西安石油大学计算机学院 4 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (64)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
岩石图像处理
颜色量化
K-Means
像素点
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安石油大学学报(自然科学版)
双月刊
1673-064X
61-1435/TE
大16开
西安市南郊电子二路18号
1959
chi
出版文献量(篇)
2967
总下载数(次)
4
总被引数(次)
29672
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导