基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的:利用MeSH组配规则自动抽取文摘中表达特定语义关系的句子,为制定自然语言处理关系抽取模板以及句子水平的信息检索提供依据.方法:根据主题词组配规则,使用python语言从文摘数据中匹配出含有特定MeSH主题词概念的候选关系句,从中抽取出以描述概念间关系的短语或句子.邀请专家对100条候选关系句进行概念间语义关系人工标注,将得到的语义关系三元组作为评价金标准,与自动抽取出的概念间关系进行对比分析.将自动抽取的结果加以整理形成特定概念之间的语义关系表达.结果:对大量的自然文本句进行句法分析,批量识别出2个特定概念间语义关系抽取方法的准确率为87%,召回率为62%,F1=71.8%.结论:利用MeSH组配规则抽取表达特定语义关系句子的方法具有较高的准确率与召回率,对生物医学文本理解及医学知识发现等具有借鉴意义.
推荐文章
中文语义组块自动抽取方法
语义表述
深度信念网络
深度学习
中文语义组块
语义关系自动抽取方法
语义关系
同义语义
谓词模板
种子模板
结合语义和依存关系的药物相互作用关系抽取
药物相互作用
关系抽取
循环神经网络
多头自注意力机制
最短依存路径
结合实体词与句子语义的地理实体关系抽取
空间数据挖掘
网络文本
地理实体关系
长短时记忆网络
词向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用MeSH组配规则自动抽取表达特定语义关系句子的探索
来源期刊 中华医学图书情报杂志 学科 社会科学
关键词 自然语言处理 关系抽取 知识表达
年,卷(期) 2019,(10) 所属期刊栏目 情报研究与方法
研究方向 页码范围 34-41
页数 8页 分类号 G254.2
字数 5341字 语种 中文
DOI 10.3969/j.issn.1671-3982.2019.10.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔雷 中国医科大学医学信息学院 99 853 16.0 23.0
2 尹延洁 中国医科大学医学信息学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (3)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自然语言处理
关系抽取
知识表达
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中华医学图书情报杂志
月刊
1671-3982
11-4745/R
大16开
北京市海淀区西四环中路59号
2-714
1991
chi
出版文献量(篇)
5113
总下载数(次)
5
总被引数(次)
21058
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导