高分辨率合成孔径雷达(Synthetic Aperture Radar,SAR)图像中不同目标的尺寸区别较大,这使得小目标的特征不明显,为目标检测带来了极大的挑战.针对这一问题,提出了SAR-YOLO-960算法.该算法首先改进了图像输入大小的限制,将输入图像提升到960×960像素;进而改善了YOLOv3(You Only Look Once v3)网络的整体结构,修改并添加了卷积层和残差层,整体采用64倍降采样,使其速度大大提升;最后,根据SAR图像目标的特点,改进了损失函数,从而得到了SAR-YOLO-960算法.在手工制作的高分辨率SAR图像数据集中的目标检测结果表明,相对于当前主流的检测算法,该算法性能显著提高;检测速度达32.8帧/秒,准确率达95.7%,召回率达94.5%.